UNPUBLISHED FRELIMINARY DATA A Remark on the Configuration Interaction Approach Charles W. Scherr and Robert E. Knight [1963] 10p 79 Physics Department N 6 4 11231 OTS PRICE Physics Department The University of Texas C. WASA CR-5269 In 1928 Hylleraas concluded that the expansion of the helium atom wavefunction in Legendre functions, $\boldsymbol{P}_{\boldsymbol{\ell}}(\boldsymbol{\,\omega\!})$, of the cosine of the angle between the \mathfrak{L}_1 and \mathfrak{L}_2 radius vectors is a relatively slowly converging series. The question was reopened in 1952 by Luke, Meyerott, and Clendenin² who thought they had obtained a rapid convergence with the first three terms (l = 0, 1, 2) of such an expansion for the 2^3 S state of Li⁺. Subsequent reassessments 3,4 have established beyond question that for the accuracy now possible, the procedure is slowly convergent. Nevertheless, there seems to be a continuing interest in the problem. Thus, Weiss⁵ took the trouble to find the E (the Legendre expansion for the wavefunctions leads to a corresponding series expression for the energy, $E = \Sigma_{\ell} E^{\ell}$) for the 1 ^{1}S ground state of helium for $\ell = 0,1,2,3,4$. Schwartz⁶ has investigated a closely related problem in which the second-order perturbation energy coefficient, ϵ_2 , is obtained by expanding the first-order wavefunction in the same sort of Legendre function expansion, so that ϵ_{γ} is obtained via $\epsilon_2 = \Sigma_1 \epsilon_2^{\ell}$. His conclusion is that for ℓ large enough the ϵ_2^{ℓ} for the ground state should drop off as ℓ^{-4} . Schwartz also makes the guess that the energy series should converge as ℓ^{-6} for the triplet states as contrasted to the ℓ^{-4} convergence he expects for the singlets, and our results confirm this guess to some extent. Lakin⁷, investigating the cause of the slow convergence, concludes that Weiss's argument that the slow convergence is due to the singularity at $r_{12} \rightarrow 0$ is not a sufficient explanation. Lakin *This work was supported by a grant from the National Aeronautical and Space Administration. bases some of his discussion on known E^{ℓ} values. And finally, Davis has recently obtained E⁰ for the 1¹S two-electron iso-electronic series through Z = 20 by a variational procedure. The perturbation procedure is a particularly convenient way to obtain the E^{ℓ} since to a large extent elaborate separate calculations, otherwise useless, are not necessary; by labeling the terms in the expansion set properly, it is possible to obtain the $\epsilon_{2n}^{\quad \ \ell}$ as mere incidentals in the calculation of the ϵ_{2n} . In addition, a single calculation suffices for an entire iso-electronic series. The individual E^{ℓ} are then obtained via $E^{\ell} = \sum_{i} Z^{2-i} \epsilon_{i}^{\ell}$. In Table I we present the ϵ_{i}^{ℓ} for i = 0, 1, 2, 3 and $\ell = 0, 1, 2$ for the $1^{1}S$, $2^{3}S$, $2^{1}P$ and $2^{3}P$ states of the two-electron iso-electronic series. These results were obtained from our previous calculations on these systems 10 . We have also extended our previous calculations slightly to obtain ϵ_i^0 through i=7 for the ground state. These latter, listed in Table II, suffice to reproduce all of Davis's calculations satisfactorily, and, in fact, should give more accurate results from Z = 3 on. Indeed, if the extrapolation procedure, discussed elsewhere 10, is assumed valid here, then one or two additional significant figures can be estimated. For example E⁰ to 7th-order for 1¹S helium is -2.87901453, but when extrapolated 11 comes to -2.8790274 in agreement with the value of Shull and Löwdin⁴ (-2.87900 \pm 0.00003) or of Davis⁸ (-2.8790280 \pm 0.0000018). Note from Table I the more rapid convergence of the series for the triplets than for the singlets. It is even possible that for triplet states a Legendre function expansion may be suitable if not too high accuracy is wanted. Table I. The $\epsilon_1^{\ \ell}$ in Atomic Units | £3 | -0.00521541
0.00805752
0.00315220 | -0.007051597
0.001868871
0.000235263 | -0.03760719
0.05580966
0.00348572
0.00443612 | -0.019482739
0.002356303
0.000360426
0.000207490 | |---------------------|---|---|---|---| | €.2 k | -0.12533198
-0.02644609
-0.00361236
-0.00227582 | -0.045317648
-0.001902139
-0.000135301
-0.000054104 | -0.14684854
-0.00780312
-0.00091561
-0.00145396 | -0.070480500
-0.002189892
-0.000121887
-0.000200324 | | ϵ_1^{ℓ} | .0.625 | 0.187928669 | 0.259868922 | 0.225727785 | | ¢0, | -1.0 | -0.625 | -0.625 | -0.625 | |
8 | 0 1 2 $\epsilon_{1} - \epsilon_{1}^{0} - \epsilon_{1}^{1} - \epsilon_{1}^{2}$ | 0 1 2 $\boldsymbol{\epsilon}_{1} - \boldsymbol{\epsilon}_{1}^{0} - \boldsymbol{\epsilon}_{1}^{1} - \boldsymbol{\epsilon}_{1}^{2}$ | 0 1 2 $\epsilon_{1} - \epsilon_{1}^{0} - \epsilon_{1}^{1} - \epsilon_{2}^{2}$ | $\begin{array}{c} 0 \\ 1 \\ 2 \\ \epsilon_1 - \epsilon_1^0 - \epsilon_1^2 - \epsilon_2^2 \end{array}$ | | State | 1 ¹ S | . 2 ³ S | 2 ¹ P | . 2 ³ P | Table II. The $oldsymbol{\epsilon_i}^0$ for the 1 $^1\mathrm{S}$ State in Atomic Units | i | $\epsilon_{\mathrm{i}}^{0}$ | $\epsilon_{\mathbf{i}}^{0}/\epsilon_{\mathbf{i-1}}^{0}$ | |---|-----------------------------|---| | 0 | -1.0 | | | 1 | 0.625 | | | 2 | -0.12533198 | | | 3 | -0.00521541 | | | 4 | -0.00301007 | .577 | | 5 | -0.00181567 | .603 | | 6 | -0.00114702 | .632 | | 7 | -0.00075762 | .661 | ## References - 1. E. Hylleraas, Z. Physik 48, 469 (1928). - P. J. Luke, R. E. Meyerott, and W. W. Clendenin, Phys. Rev. 85, 401 (1952). - 3. L. C. Green<u>et al</u>, <u>Phys. Rev. 96</u>, 319 (1954) and earlier references given there. - 4. H. Shull and P.-O. Löwdin, J.C.P. 30, 617 (1959). - 5. A. Weiss, Phys. Rev. 122, 1826 (1961). - 6. C. Schwartz, Phys. Rev. 126, 1015 (1962). - W. Lakin, Technical Report TID-4600, NYO-10,430 Physics, for New York University, July 15, 1963. - 8. H. L. Davis, J.C.P. 39, 1827 (1963). - 9. Units of length a_0 ; units of energy 2Rhc. - 10. C. W. Scherr and R. E. Knight, <u>Rev. Mod. Phys. 35</u>, 436 (1963) and earlier references given there. - 11. The ϵ_i^0 seem to be converging in the same fashion as the ϵ_i^0 of reference 10. The exact behavior is not critical for the present purpose, and an analogous rate of convergence was assumed.